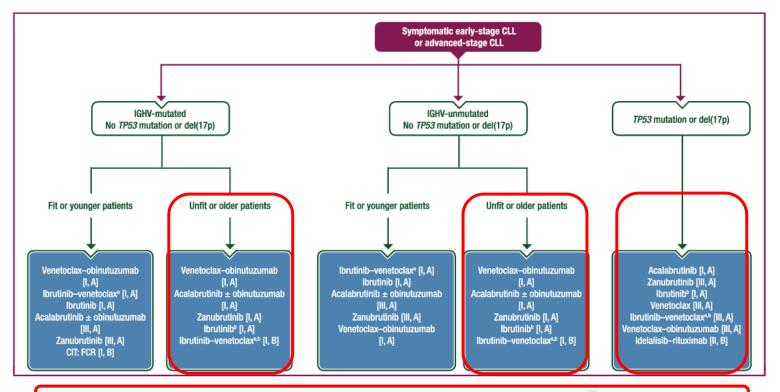


Il profilo di tossicità: non può che giocare un ruolo nella scelta

Paolo Falcucci


Ematologia IRCCS Istituto Nazionale Tumori Regina Elena - Roma

Cagliari, Hotel Regina Margherita – 16 Ottobre 2024

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Abbvie	-	-	-	-	-	-	х
AstraZeneca	-	-	-	-	-	-	x
Beigene	-	-	-	-	-	x	х
Janssen	-	-	-	-	-	-	x

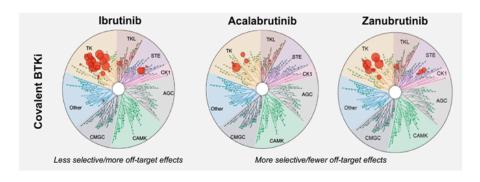
ESMO clinical practice guideline interim update 2024

blbrutinib or ibrutinib-venetoclax should be considered carefully in older patients with cardiac comorbidities.

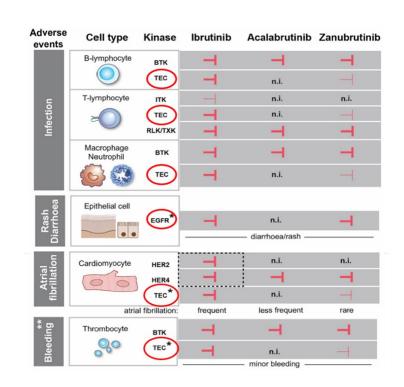
NCCN Guidelines Version 1.2025 Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma

SUGGESTED TREATMENT REGIMENS^{a,b,c,d}
CLL/SLL Without del(17p)/TP53 Mutation
(alphabetical by category)

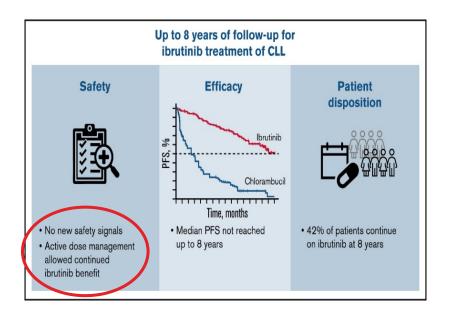
FIRST-LINE THERAPY[®] **Preferred Regimens Useful in Certain Circumstances** Other Recommended Regimens • Acalabrutinib^{f,g,*} ± obinutuzumab • Ibrutinib ^{f,g,i,*} (category 1) (category 1) • Ibrutinib^{f,g,*} + obinutuzumab (category Consider for IGHV-mutated CLL in patients aged <65 y (category 1) • Venetoclax^{f,h} + obinutuzumab without significant comorbidities ▶ FCR (fludarabine, cyclophosphamide, rituximab)^{k,l,m} Ibrutinib^{f,g,*} + rituximab^j (category 2B) Ibrutinib^{f,g,*} + venetoclax^{f,h} (category 2B) (category 1) Consider when BTKi and venetoclax are not available Zanubrutinib^{f,g,*} (category 1) or contraindicated or rapid disease debulking needed ▶ Bendamustineⁿ + anti-CD20 mAb^{o,p} Obinutuzumab ± chlorambucil^q ▶ High-dose methylprednisolone (HDMP) + anti-CD20 mAbo (category 2B; category 3 for patients <65 y without significant comorbidities)

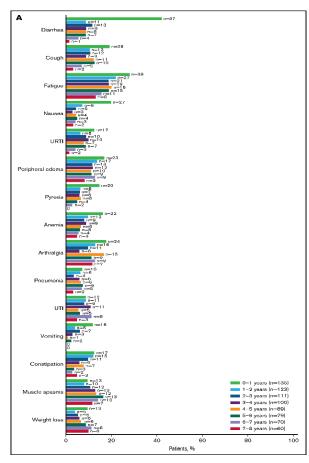

Covalent BTKi

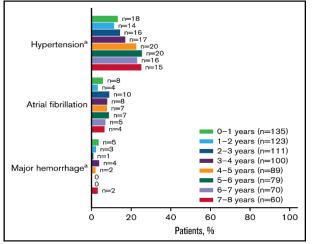
SUGGESTED TREATMENT REGIMENS^{a,b,c,d} CLL/SLL With del(17p)/TP53 Mutation (alphabetical by category)


CIT is not recommended since del(17p)/TP53 mutation is associated with low response rates.

	FIRST-LINE THERAPY [®]	
Preferred Regimens	Other Recommended Regimens	Useful in Certain Circumstances
	Ibrutinib ^{f,g,i,*} Ibrutinib ^{f,g,*} + venetoclax ^{f,h} (category 2B)	Consider when BTKi and venetoclax are not available or contraindicated or rapid disease debulking needed HDMP + anti-CD20 mAb ^o Obinutuzumab


Selectivity: kinome profiling of BTK Inhibitors using DiscoverX KINOMEscan


<u>Less selective</u> BTK inhibitors have <u>more off-target effects</u>, which contribute to more toxicity compared with more selective agents²



RESONATE-2: first-line Ibrutinib treatment for patients with chronic lymphocytic leukemia

	First line Ibrutinib (n=136)
Median duration of Ibrutinib treatment, (years) range	6.2 (0.06-8.1)
Continuing Ibrutinib on study, n (%)	57 (42)
Discontinued Ibrutinib, n (%)	
• AE	32 (24)
• PD	18 (13)
• Death	12 (9)
Withdrawal by patients	9 (7)
Investigatior decision	7 (5)

The most frequent **AEs** of any grade with Ibrutinib were:

- diarrhea (50%)
- cough (37%)
- fatigue (37%)

AEs of clinical interest:

- **hypertension:** prevalence rates (grades 1-3) were 25%, 23%, and 25% of patients in years 5-6, 6-7, and 7-8, respectively.
 - Overall, grade 3 hypertension occurred in 17 (12%) patients
- atrial fibrillation: prevalence rates (grades 1-3) over time were 9%, 7%, and 7% of patients in years 5-6, 6-7, and 7-8, respectively.

 Overall, grade 3 atrial fibrillation occurred in 8 (6%) patients.

Presentation #636

Acalabrutinib ± Obinutuzumab vs Obinutuzumab + Chlorambucil in Treatment-naive Chronic Lymphocytic Leukemia: 6-Year Follow-up of ELEVATE-TN

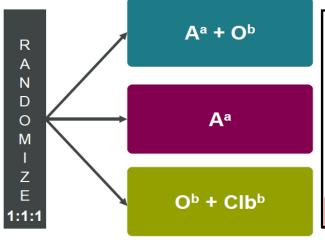
Jeff P. Sharman,¹ Miklos Egyed,² Wojciech Jurczak,³ Alan Skarbnik,⁴ Krish Patel,⁵ Ian W. Flinn,⁶ Manali Kamdar,⁷ Talha Munir,⁸ Renata Walewska,⁹ Marie Hughes,¹⁰ Laura Maria Fogliatto,¹¹ Yair Herishanu,¹² Versha Banerji,¹³ George Follows,¹⁴ Patricia Walker,¹⁵ Karin Karlsson,¹⁶ Paolo Ghia,¹⁷ Ann Janssens,¹⁸ Florence Cymbalista,¹⁹ John C. Byrd,²⁰ Emmanuelle Ferrant,²¹ Alessandra Ferrajoli,²² William G. Wierda,²² Veerendra Munugalavadla,²³ Catherine Wangui Wachira,²⁴ Chuan-Chuan Wun,²³ Jennifer A. Woyach²⁰

¹Willamette Valley Cancer Institute and Research Center/US Oncology Research, Eugene, OR, USA; ²Somogy County Mór Kaposi General Hospital, Kaposvár, Hungary; ³Maria Skłodowska-Curie National Research Institute of Oncology, Krakow, Poland; ⁴Novant Health Cancer Institute, Charlotte, NC, USA; ⁵Swedish Cancer Institute, Seattle, WA, USA; ⁶Sarah Cannon Research Institute, Tennessee Oncology, Nashville, TN, USA; ⁷University of Colorado Cancer Center, Aurora, CO, USA; ⁸Haematology, Haematological Malignancy Diagnostic Service (HMDS), St. James's Institute of Oncology, Leeds, United Kingdom; ⁹Cancer Care, University Hospitals Dorset, Bournemouth, United Kingdom; ¹⁰Tauranga Hospital, Tauranga, New Zealand; ¹¹Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil; ¹²Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; ¹³Departments of Internal Medicine, Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and CancerCare Manitoba, Winnipeg, Canada; ¹⁴Department of Haematology, Addenbrooke's Hospital NHS Trust, Cambridge, United Kingdom; ¹⁵Peninsula Health and Peninsula Private Hospital, Frankston, Melbourne, Australia; ¹⁶Skåne University Hospital, Lund, Sweden; ¹⁷Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milano, Italy; ¹⁸University Hospitals Leuven, Leuven, Belgium; ¹⁹Bobigny: Hématologie, CHU Avicennes, Bobigny, France; ²⁰The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; ²¹Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d'Hématologie Clinique, Pierre-Bénite, France; ²²University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²³AstraZeneca, South San Francisco, CA, USA; ²⁴AstraZeneca, New York, NY, USA

ELEVATE-TN study design

TN CLL (N=535)

Key inclusion criteria


- Age ≥65 years, or >18 to <65 years with:
 - Creatinine clearance 30–69 mL/min (by Cockcroft-Gault equation)
 - CIRS-G score >6
- TN CLL requiring treatment per iwCLL 2008 criteria⁶
- ECOG PS ≤2

Key exclusion criteria

 Significant cardiovascular disease

Stratification

- del(17p), yes vs no
- ECOG PS 0-1 vs 2
- · Geographic region

Primary endpoint

PFS (IRC-assessed): A+O vs O+Clb

Secondary/other endpoints

- PFS (IRC-assessed): A vs O+Clb
- PFS (INV-assessed)
- ORR (IRC- and INV-assessed)
- TTNT
- OS
- uMRD
- Safety

Crossover from O+Clb to A was allowed after IRC-confirmed progression

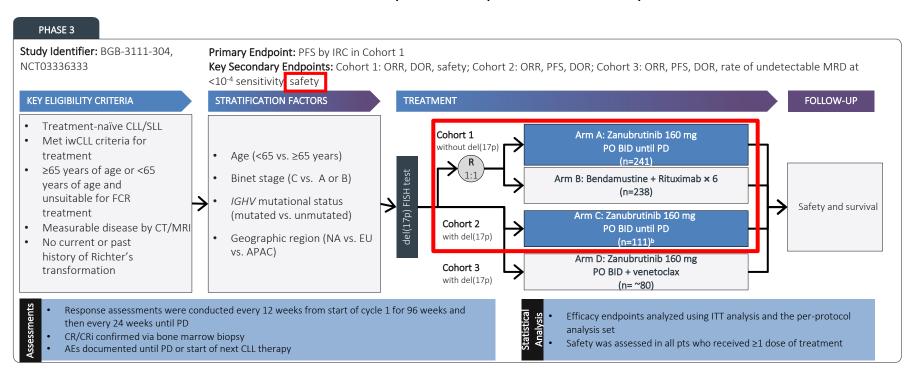
Note: After interim analysis, PFS assessments were by investigator only.³ All analyses are ad-hoc and *P*-values are descriptive.

NCT02475681. Data cutoff: March 3, 2023. Patients were enrolled between September 2015 and February 2017.

^aContinued until disease progression or unacceptable toxicity at 100 mg PO BID.

^bTreatments were fixed duration and administered for 6 cycles.

ELEVATE-TN: events of clinical interest for Acalabrutinib 6 year follow-up


Safety

	A+O (n=178)		A (n=179)	
	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Cardiac events	49 (27.5)	22 (12.4)	42 (23.5)	21 (11.7)
Atrial fibrillation	13 (7.3)	3 (1.7)	16 (8.9)	3 (1.7)
Bleeding	95 (53.4)	12 (6.7)	81 (45.3)	8 (4.5)
Major bleeding	16 (9.0)	12 (6.7)	10 (5.6)	8 (4.5)
Hypertension ^a	20 (11.2)	8 (4.5)	20 (11.2)	9 (5.0)
Infections	147 (82.6)	63 (35.4)	144 (80.4)	50 (27.9)
SPMs	36 (20.2)	18 (10.1)	35 (19.6)	9 (5.0)
SPMs excluding non-melanoma skin	24 (13.5)	13 (7.3)	22 (12.3)	7 (3.9)

Hypertension and AF was low also at 74.5 months of follow-up

SEQUOIA: study design

multicenter, multicohort, open-label, part-randomized phase III trial

Summary of EAIRs for select AEIs

cohorts 1 and 2 (any grade and grade ≥3)

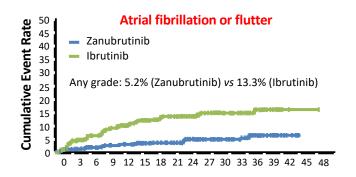
SEQUOIA – extended mFU 44m

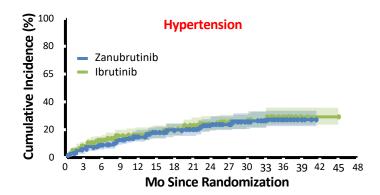
	Patients without	Patients with del(17p)	
	Arm A: Zanubrutinib (n=240)	Arm B: BR (n=227)	Arm C: Zanubrutinib (n=111)
Atrial fibrillation and flutter	0.13	0.08	0.15
Hemorrhage	2.02	0.40	2.73
Major hemorrhage	0.20	0.05	0.20
Hypertension	0.49	0.45	0.35

Exposure-adjusted incidence rates for hypertension were similar between arms and lower than previously reported.

Atrial fibrillation events remained low.

Zanubrutinib discontinuation rates in patients without and with del(17p) were 24.9% and 29.7%, respectively.

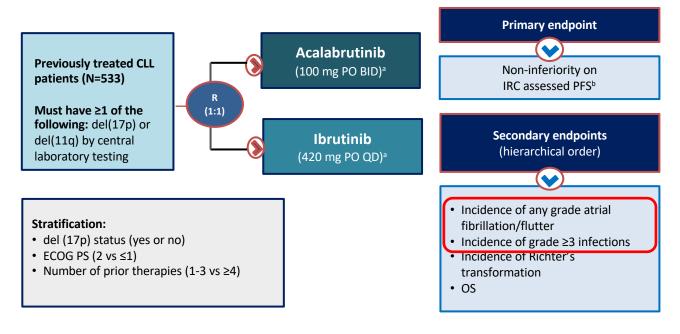

Zanubrutinib was well tolerated over this extended treatment period and aligned with the known profile of BTK inhibitors.


Second-generation covalent BTK inhibitors vs Ibrutinib

ALPINE: Zanubrutinib vs Ibrutinib in R/R CLL/SLL

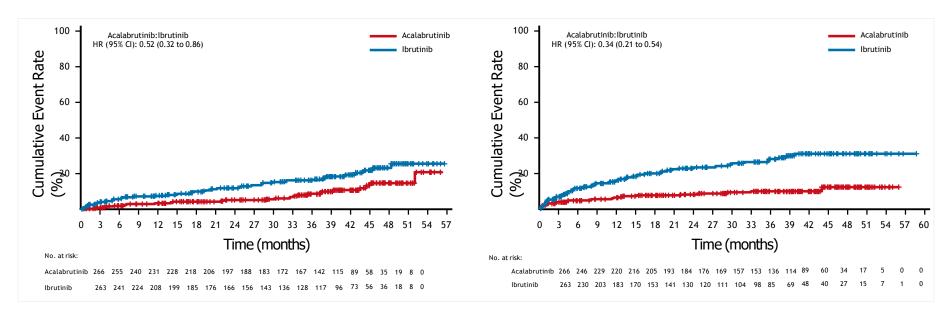
Randomized phase III trial of **Zanubrutinib** vs **Ibrutinib** for patients with CLL relapsed or refractory to ≥ 1 previous line of treatment; no prior BTKi (N = 652)

extended mFU 39m	Zanubrutinib (n=324)	Ibrutinib (n=324)
Cardiac adverse events	80 (24.7)	112 (34.6)
Serious cardiac adverse events	11 (3.4)	31 (9.6)
Cardiac adverse events leading to treatment discontinuation	3 (0.9)	15 (4.6)
Ventricular extrasystoles	1 (0.3)	0
Atrial fibrillation/flutter	1 (0.3)	6 (1.9)
Cardiac failure	1 (0.3)	2 (0.6)
Cardiac arrest	0	2 (0.6)
Cardiac failure acute	0	1 (0.3)
Congestive cardiomyopathy	0	1 (0.3)
Myocardial infarction	0	1 (0.3)
Palpitations	0	1 (0.3)
Ventricular fibrillation	0	1 (0.3)



ALPINE – extended mFU 39m

	Zanubrutinib (n=324)		Ibrutinib (n=324)		
	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
Infection	264 (81.5)	115 (35.5)	260 (80.2)	111 (34.3)	
Opportunistic infections	8 (2.5)	6 (1.9)	13 (4.0)	5 (1.5)	
COVID-19 related	145 (44.8)	56 (17.3)	105 (32.4)	38 (11.7)	
Bleeding	142 (43.8)	12 (3.7)	144 (44.4)	13 (4.0)	
Major hemorrhage	13 (4.0)	12 (3.7)	16 (4.9)	13 (4.0)	
Hypertension	86 (26.5)	53 (16.4)	80 (24.7)	47 (14.5)	
Atrial fibrillation/flutter	22 (6.8)	10 (3.1)	53 (16.4)	16 (4.9)	
Anemia	53 (16.4)	7 (2.2)	59 (18.2)	11 (3.4)	
Neutropenia	100 (30.9)	72 (22.2)	94 (29.0)	72 (22.2)	
Thrombocytopenia	43 (13.3)	12 (3.7)	53 (16.4)	19 (5.9)	
Second primary malignancies	46 (14.2)	26 (8.0)	52 (16.0)	19 (5.9)	


- lower rate of grade ≥3 and serious AEs, fewer AEs leading to treatment discontinuation, and dose reduction.
- safer cardiac profile than Ibrutinib with significantly lower rates of atrial fibrillation, serious cardiac events, cardiac events leading to treatment discontinuation, and no fatal cardiac events.

ELEVATE-RR: study design

^aContinued until disease progression or unacceptable toxicity. ^bConducted after enrollment and accrual of ~250 IRC-assessed PFS events. BID = twice daily; CLL = chronic lymphocytic leukemia; ECOG PS = eastern cooperative oncology group performance status; IRC = independent review committee; OS = overall survival; PFS = progression-free survival; PO = orally; R = randomization; QD = once daily.

ELEVATE-RR: cumulative incidence of any-grade atrial fibrillation and hypertension

ATRIAL FIBRILLATION

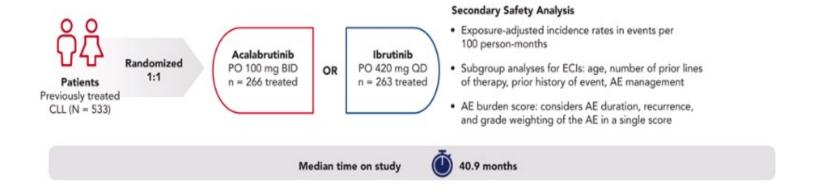
9.4% vs 16% (p=0.02)

48% lower cumulative AF risk with Acalabrutinib

HYPERTENSION

9.4% vs 23.2%

ELEVATE-RR: additional endpoints

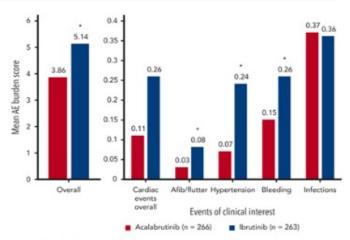

mFU 40.9m

	Any g	grade	Gra	ade ≥3
Events, n (%)	Acalabrutinib (n=266)	Ibrutinib (n=263)	Acalabrutinib (n=266)	Ibrutinib (n=263)
Cardiac events	64 (24.1)	79 (30.0)	23 (8.6)	25 (9.5)
Atrial fibrillation	25 (9.4)	42 (16.0)	13 (4.9)	10 (3.8)
Ventricular arrythmias	0	3 (1.1)	0	1 (0.4)
Bleeding events	101 (38.0)	135 (51.3)	10 (3.8)	12 (4.6)
Major bleeding events	12 (4.5)	14 (5.3)	10 (3.8)	12 (4.6)
Hypertension	25 (9.4)	61 (23.2)	11 (4.1)	24 (9.1)
Infections	208 (78.2)	214 (81.4)	82 (30.8)	79 (30.0)
ILD/pneumonitis	7 (2.6)	17 (6.5)	1 (0.4)	2 (0.8)
SPMs excluding NMSC	24 (9.0)	20 (7.6)	16 (6.0)	14 (5.3)

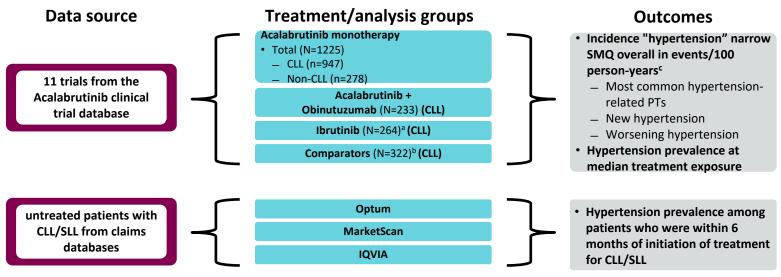
Atrial fibrillation/flutter events of any grade were significantly lower with Acalabrutinib vs Ibrutinib (9.4% vs 16%; P=0.02)

Statistically significant reduction in any grade **atrial fibrillation** rates, Acalabrutinib was associated with a lower incidence of **bleeding events**, **hypertension**, and **ILD/pneumonitis**

Detailed safety profile of Acalabrutinib vs Ibrutinib in previoulsy treated CLL in the ELEVATE-RR trial



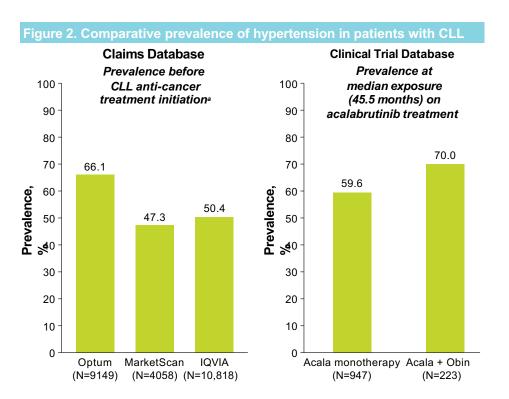
Detailed safety profile of Acalabrutinib vs Ibrutinib in previoulsy treated CLL in the ELEVATE-RR trial


Exposure-adjusted Incidence

- Diarrhea, arthralgia, UTI, back pain, muscle spasms, and dyspepsia incidence rates were 1.5- to 4.1-fold higher with ibrutinib
- · Headache and cough incidence rates were 1.6- and 1.2-fold higher, respectively, with acalabrutinib
- · Afib/flutter, hypertension, and bleeding incidence rates were 1.6- to 2.8-fold higher with ibrutinib

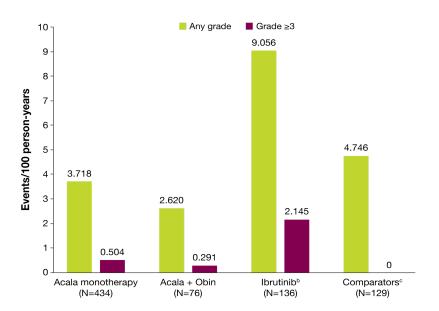
Event-based analyses and AE burden scores demonstrated higher AE burden overall and specifically for atrial fibrillation, hypertension, and hemorrhage with Ibrutinib vs Acalabrutinib

*Two-sided P-value < .05 without multiplicity adjustment based on Wilcoxon rank-sum test. P-value compares difference in overall distribution rather than mean score. Cumulative review of hypertension in patients with CLL and other hematologic malignancies treated with Acalabrutinib

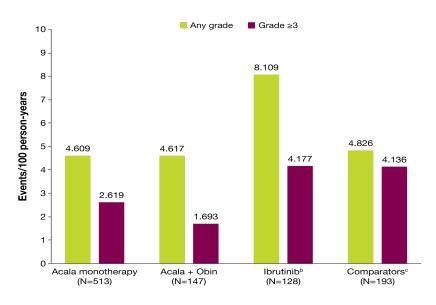


^aPatients with R/R CLL from ELEVATE-RR

^bPatients with CLL treated with Obinutuzumab plus Chlorambucil (ELEVATE-TN), Idelalisib plus Rituximab (ASCEND), or Bendamustine plus Rituximab (ASCEND)

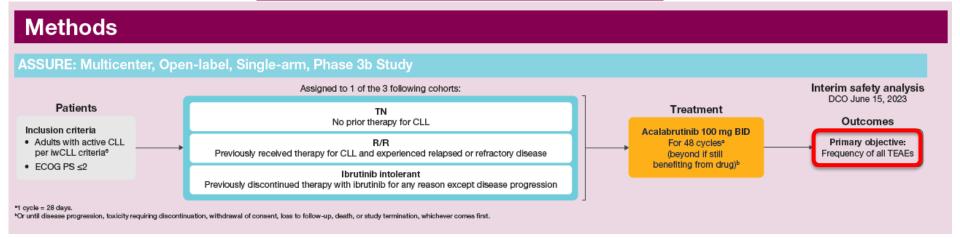

^c"Hypertension" narrow SMQ per MedDRA 25.1.

Cumulative review of hypertension in patients with CLL and other hematologic malignancies treated with Acalabrutinib


- in the claims database analysis of patients with TN CLL prior to treatment initiation, prevalence of hypertension ranged from 47.3% to 66.1%
- in the clinical trial database of patients with CLL treated with Acalabrutinib monotherapy, hypertension prevalence was 59.6% at a median treatment exposure of 45.5 months

Exposure-adjusted incidence rate of **new hypertension** in patients with CLL

EAIR of **new hypertension** in patients with CLL treated with Acalabrutinib monotherapy was 3.718, which was lower than in the patients with CLL treated with Ibrutinib in ELEVATE-RR (9.056)

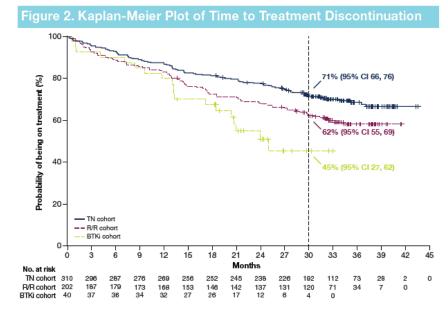

Exposure-adjusted incidence rate of worsening hypertension in patients with CLL

EAIR of worsening hypertension was relatively similar among Acalabrutinib monotherapy, Acalabrutinib +Obinutuzumab, and comparator groups, except Ibrutinib, which was relatively higher

Interim Results From ASSURE: A Phase 3b Safety Study of Acalabrutinib in Patients With Chronic Lymphocytic Leukemia

Stephen Opat,¹ Farrukh T. Awan,² Laura Fogliatto,³ Eugene Nikitin,⁴ Joanna Czerwinski,⁵ Rodrigo Santucci Alves da Silva,⁰ Srinivas Jujjavarapu,² Olga Samoilova,⁰ Caroline Dartigeas,⁰ Hoa Tran,¹⁰ Javier de la Serna,¹¹ Versha Banerji,² Laura Magnano Mayer,¹³ Jason Hart,¹⁴ Julia von Tresckow,¹⁵ Christian B. Poulsen,¹⁰ Ki Seong Eom,¹² Michele Merli,¹⁰ Ellie John,³⁰ Jiefen Munley,²⁰ Shweta Hakre,²¹ Richard Hermann.²¹ Carsten U. Niemann²²

Objective


 To report interim safety results from ASSURE (NCT04008706), an ongoing global, phase 3b safety study of acalabrutinib monotherapy in patients with CLL in a real-world clinical practice setting

P684

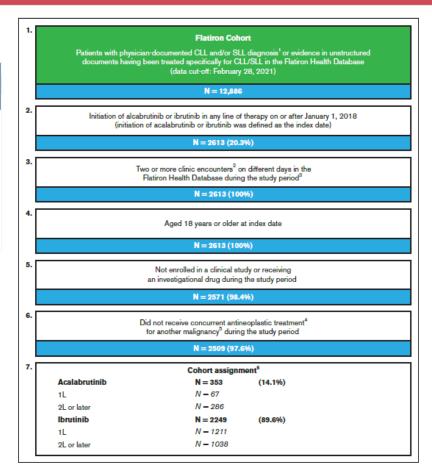
Interim Results From ASSURE: A Phase 3b Safety Study of Acalabrutinib in Patients With Chronic Lymphocytic Leukemia

Stephen Opat,¹ Farrukh T. Awan,² Laura Fogliatto,³ Eugene Nikitin,⁴ Joanna Czerwinski,⁵ Rodrigo Santucci Alves da Silva,⁴ Srinivas Jujjavarapu,⁻ Olga Samoilova,⁴ Caroline Dartigeas,⁴ Hoa Tran,¹⁰ Javier de la Serna,¹¹ Versha Banerji,¹² Laura Magnano Mayer,¹³ Jason Hart,¹⁴ Julia von Tresckow,⁵ Christian B. Poulsen,¹⁵ Ki Seong Eom,¹⁻ Michele Merli,¹⁵ Ellie John,¹⁰ Jiefen Munley,²⁰ Shweta Hakre,²¹ Richard Hermann,²¹ Carsten U. Niemann²²

RWE confirm clinical trials data in term of TTD and AEs

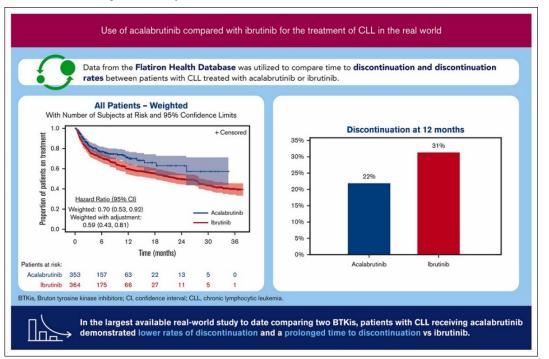
Events of clinical interest, ^a n (%)	TN cohort n=310		R/R cohort n=202		lbrutinib-intolerant cohort n=40		Total N=552	
	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3
Cardiac events	60 (19.4)	21 (6.8)	31 (15.3)	10 (5.0)	9 (22.5)	1 (2.5)	100 (18.1)	32 (5.8)
Atrial fibrillation/flutter	20 (6.5)	7 (2.3)	4 (2.0)	1 (0.5)	2 (5.0)	1 (2.5)	26 (4.7)	9 (1.6)
Ventricular arrhythmias ^b	3 (1.0)	0	0	0	1 (2.5)	0	4 (0.7)	0
Hemorrhage	156 (50.3)	12 (3.9)	95 (47.0)	8 (4.0)	19 (47.5)	1 (2.5)	270 (48.9)	21 (3.8)
Major hemorrhage	12 (3.9)	12 (3.9)	9 (4.5)	8 (4.0)	1 (2.5)	1 (2.5)	22 (4.0)	21 (3.8)
Hypertension	29 (9.4)	10 (3.2)	12 (5.9)	7 (3.5)	2 (5.0)	1 (2.5)	43 (7.8)	18 (3.3)
Infections (including COVID-19)	229 (73.9)	76 (24.5)	152 (75.2)	81 (40.1)	30 (75.0)	8 (20.0)	411 (74.5)	165 (29.9)
Second primary malignancies excluding non-melanoma skin	29 (9.4)	16 (5.2)	17 (8.4)	7 (3.5)	3 (7.5)	2 (5.0)	49 (8.9)	25 (4.5)

REGULAR ARTICLE

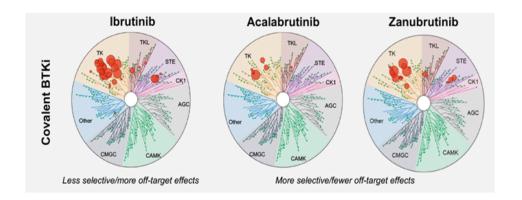


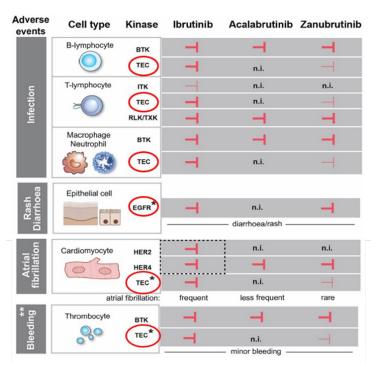
Real-world comparative effectiveness of acalabrutinib and ibrutinib in patients with chronic lymphocytic leukemia

Lindsey E. Roeker,¹ Maral DerSarkissian,² Kellie Ryan,³ Yan Chen,² Mei Sheng Duh,² Svea K. Wahlstrom,⁴ Shweta Hakre,⁵ Louise Yu,² Helen Guo,² and Anthony R. Mato¹


¹CLL Program, Leukemia Service, Division of Hematologic Oncology, Memorial Sloan Kettering Cancer Center, New York, NY; ²Analysis Group, Boston, MA; ³Global Medical Affairs, Astra-Zeneca Pharmaceuticals, Gaithersburg, MD; ⁴US Patient Safety Surveillance, Astra-Zeneca Pharmaceuticals, Wilmington, DE; and ⁸US Medical Affairs, Astra-Zeneca Pharmaceuticals, Gaithersburg, MD;

first comparative effectiveness study of Acalabrutinib and Ibrutinib in real-world patients with chronic lymphocytic leukemia


Acalabrutinib demonstrated statistically significant longer time to discontinuation than Ibrutinib


Flatiron Study - 2509 patients 2018-2021

The median (95% CI) TTD was not reached (NR; 25.1, NR) for the Acalabrutinib cohort and was 23.4 months (18.1, 28.7) for the Ibrutinib cohort.

The discontinuation rate at 12 months was 22% for the weighted Acalabrutinib cohort vs 31% for the weighted Ibrutinib cohort (P = .005).

second generation BTKi inhibitors: same efficacy less toxicity